

CircuitPython Libraries on any Computer

with Raspberry Pi Pico

Created by Carter Nelson

https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-raspberry-pi-pico

Last updated on 2023-07-07 01:38:08 PM EDT

©Adafruit Industries Page 1 of 40

5

8

11

12

13

15

17

19

Table of Contents

Overview

• The Magical u2if Firmware

• CircuitPython Libraries on Personal Computers

• Required Hardware

• Other Hardware

Running CircuitPython Code without CircuitPython

• Adafruit Blinka: a CircuitPython Compatibility Library

• Raspberry Pi and Other Single-Board Linux Computers

• Desktop Computers

• MicroPython

• Installing Blinka

• Installing CircuitPython Libraries

• Linux Single-Board Computers

• Desktop Computers using a USB Adapter

• MicroPython

Setup for Pico

• linux dmesg

• Windows Device Manager

Setup on PC

• Additional Information

Windows

• Have Python 3 Installed

• Install hidapi

• Install Blinka

• Set Environment Variable

• Run the sanity checks.

Mac OSX

• Install libusb

• Install PySerial

• Install hidapi

• Install Blinka

• Set Environment Variable

• Run the sanity checks.

Linux

• Install libusb and libudev

• Setup udev rules

• Install hidapi

• Install pySerial

• Install Blinka

• Set environment variable

• Run the sanity checks.

Post Install Checks

• Check that hidapi is installed correctly

• Check that pySerial is installed correctly

©Adafruit Industries Page 2 of 40

23

24

25

27

28

29

32

33

35

• Check that Pico can be found

• Check environment variable within Python

• Check Blinka is setup correctly

Pinout

• Power Pins

• GPIO Pins

• I2C Pins

• SPI Pins

• ADC Pins

Examples

• Installing Libraries for Breakouts

GPIO

• Digital Output

• Digital Input

• Digital Input and Output

ADC

PWM

I2C

• Install MSA301 Library

• Example Code

• Live Plot Example

SPI

• Install the BME280 Library

• Run Example

NeoPixel

• Install NeoPixel Library

• Run Example

Other RP2040 Boards

• Feather RP2040

• ItsyBitsy RP2040

• QT Py RP2040

• Trinkey QT2040

©Adafruit Industries Page 3 of 40

©Adafruit Industries Page 4 of 40

Overview

This guide will show you how to use a Raspberry Pi Pico RP2040 to connect various

sensors and breakouts to your PC running Windows, Mac OSX, or Linux. Special

firmware gets loaded onto the Pico and turns it into a sort of Swiss army knife

providing:

General Purpose digital Input and Output (GPIO) for things like buttons and LEDs

Analog to Digital Conversion (ADC) for reading analog signals

Pulse Width Modulation (PWM) for servos or LED dimming

I2C and SPI for connecting *lots* of external sensors, displays, etc.

NeoPixels (WS2812B) for happy rainbow blinky fun!

This is very similar to what the FT232H () and MCP2221 () already provide.

The approach in this guide is useful if you want to run "regular" Python code on your

main computer and have it communicate with external devices connected through the

Pico (or other RP2040 board). If you are instead trying to run MicroPython code

directly on the Pico and use CircuitPython libraries, then see this other guide: CircuitP

ython Libraries on MicroPython using the Raspberry Pi Pico ().

The Magical u2if Firmware

The key element to enabling this capability on the Raspberry Pi Pico is thanks to the

excellent u2if firmware () written by execuc (). The main repo not only contains the

firmware that goes on the Pico itself, but micropython compliant Python code for

interfacing to the Pico from your PC. So if you're more used to the micropython

interface, then checkout the u2if repo. It has everything you need.

•

•

•

•

•

The u2if firmware is considered "experimental".

©Adafruit Industries Page 5 of 40

https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221
https://learn.adafruit.com/circuitpython-libraries-on-micropython-using-the-raspberry-pi-pico
https://learn.adafruit.com/circuitpython-libraries-on-micropython-using-the-raspberry-pi-pico
https://github.com/execuc/u2if
https://github.com/execuc/u2if
https://github.com/execuc
https://github.com/execuc

u2if project

In this guide, we use the exact same firmware on the Pico. But on the PC, we use the

newly updated Blinka library which has added support for interfacing with a Pico

running the u2if firmware.

CircuitPython Libraries on Personal Computers

This is essentially the same idea as discussed in the FT232H Guide () and the MCP22

21 Guide (). How can we directly connect common hardware items like buttons and

LEDS (GPIO) or sensor breakouts (I2C/SPI) to a PC?

By loading the u2if firmware () onto the Pico, it turns it into sort of a bridge using USB

on the main PC. So you end up with something like this:

On the computer, we install Blinka which provides a CircuitPython compliant interface

to the Pico with u2if. That way, all the CircuitPython libraries can then be used - on

your PC!

Required Hardware

The main requirement is the Raspberry Pi Pico RP2040.

©Adafruit Industries Page 6 of 40

https://github.com/execuc/u2if
https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h/overiew
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221/overview
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221/overview
https://github.com/execuc/u2if

Raspberry Pi Pico RP2040 with Loose

Unsoldered Headers

The Raspberry Pi foundation changed

single-board computing when they

released the Raspberry Pi computer, now

they're...

https://www.adafruit.com/product/4883

You'll need a USB cable for programming and interacting with the Pico - but you

probably have one of these laying around. Just make sure it's not a charge only cable.

Beyond that, it all depends on what you want to do. There are examples provided

later in this guide that show some typical use cases.

Other Hardware

If you're using STEMMA QT breakout boards, these cables can be helpful.

STEMMA QT / Qwiic JST SH 4-pin to

Premium Male Headers Cable

This 4-wire cable is a little over 150mm /

6" long and fitted with JST-SH female 4-

pin connectors on one end and premium

Dupont male headers on the other.

Compared with the...

https://www.adafruit.com/product/4209

STEMMA QT / Qwiic JST SH 4-pin Cable

with Premium Female Sockets

This 4-wire cable is a little over 150mm /

6" long and fitted with JST-SH female 4-

pin connectors on one end and premium

female headers on the other. Compared

with the chunkier...

https://www.adafruit.com/product/4397

©Adafruit Industries Page 7 of 40

https://www.adafruit.com/product/4883
https://www.adafruit.com/product/4883
https://www.adafruit.com/product/4883
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4209
https://www.adafruit.com/product/4397
https://www.adafruit.com/product/4397
https://www.adafruit.com/product/4397

Running CircuitPython Code without

CircuitPython

There are two parts to the CircuitPython ecosystem:

CircuitPython firmware, written in C and built to run on various microcontroller

boards (not PCs). The firmware includes the CircuitPython interpreter, which

reads and executes CircuitPython programs, and chip-specific code that controls

the hardware peripherals on the microcontroller, including things like USB, I2C,

SPI, GPIO pins, and all the rest of the hardware features the chip provides.

CircuitPython libraries, written in Python to use the native (built into the

firmware) modules provided by CircuitPython to control the microcontroller

peripherals and interact with various breakout boards.

But suppose you'd like to use CircuitPython libraries on a board or computer that

does not have a native CircuitPython firmware build. For example, on a PC running

Windows or macOS. Can that be done? The answer is yes, via a separate piece of

software called Blinka. Details about Blinka follow, however it is important to realize

that the CircuitPython firmware is never used.

Adafruit Blinka: a CircuitPython

Compatibility Library

Enter Adafruit Blinka. Blinka is a software library that emulates the parts of

CircuitPython that control hardware. Blinka provides non-CircuitPython

implementations for board , busio , digitalio , and other native CircuitPython

modules. You can then write Python code that looks like CircuitPython and uses

CircuitPython libraries, without having CircuitPython underneath.

There are multiple ways to use Blinka:

Linux based Single Board Computers, for example a Raspberry Pi

Desktop Computers + specialized USB adapters

Boards running MicroPython

More details on these options follow.

•

•

CircuitPython firmware is NOT used when using Blinka.

•

•

•

©Adafruit Industries Page 8 of 40

Raspberry Pi and Other Single-Board Linux Computers

On a Raspberry Pi or other single-board Linux computer, you can use Blinka with the

regular version of Python supplied with the Linux distribution. Blinka can control the

hardware pins these boards provide.

Desktop Computers

On Windows, macOS, or Linux desktop or laptop ("host") computers, you can use

special USB adapter boards that that provide hardware pins you can control. These

boards include MCP221A () and FT232H () breakout boards, and Raspberry Pi Pico

boards running the u2if software (). These boards connect via regular USB to your

host computer, and let you do GPIO, I2C, SPI, and other hardware operations.

MicroPython

You can also use Blinka with MicroPython, on MicroPython-supported boards (). Blinka

will allow you to import and use CircuitPython libraries in your MicroPython program,

so you don't have to rewrite libraries into native MicroPython code. Fun fact - this is

actually the original use case for Blinka.

Installing Blinka

Installing Blinka on your particular platform is covered elsewhere in this guide. The

process is different for each platform. Follow the guide section specific to your

platform and make sure Blinka is properly installed before attempting to install any

libraries.

Installing CircuitPython Libraries

Once Blinka is installed the next step is to install the CircuitPython libraries of interest.

How this is down is different for each platform. Here are the details.

Be sure to install Blinka before proceeding.

©Adafruit Industries Page 9 of 40

https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-mcp2221
https://learn.adafruit.com/adafruit-ft232h-breakout
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-raspberry-pi-pico
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-raspberry-pi-pico
https://learn.adafruit.com/circuitpython-libraries-on-any-computer-with-raspberry-pi-pico
https://learn.adafruit.com/circuitpython-libraries-on-micropython-using-the-raspberry-pi-pico

Linux Single-Board Computers

On Linux single-board computers, such as Raspberry Pi, you'll use the Python pip3 p

rogram (sometimes named just pip) to install a library. The library will be

downloaded from pypi.org () automatically by pip3 .

How to install a particular library using pip3 is covered in the guide page for that

library. For example, here is the pip3 installation information () for the library for the

LIS3DH accelerometer.

The library name you give to pip3 is usually of the form adafruit-circuitpython-

libraryname . This is not the name you use with import . For example, the LIS3DH

sensor library is known by several names:

The GitHub library repository is Adafruit_CircuitPython_LIS3DH ().

When you import the library, you write import adafruit_lis3dh .

The name you use with pip3 is adafruit-circuitpython-lis3dh . This the

name used on pypi.org ().

Libraries often depend on other libraries. When you install a library with pip3 , it will

automatically install other needed libraries.

Desktop Computers using a USB Adapter

When you use a desktop computer with a USB adapter, like the MCP2221A, FT232H,

or u2if firmware on an RP2040, you will also use pip3. However, do not install the

library with sudo pip3 , as mentioned in some guides. Instead, just install with pip3 .

MicroPython

For MicroPython, you will not use pip3 . Instead you can get the library from the

CircuitPython bundles. See this guide page () for more information about the bundles,

and also see the Libraries page on circuitPython.org ().

•

•

•

©Adafruit Industries Page 10 of 40

https://pypi.org
https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout/python-circuitpython#python-installation-of-lis3dh-library-2997958
https://learn.adafruit.com/adafruit-lis3dh-triple-axis-accelerometer-breakout/python-circuitpython#python-installation-of-lis3dh-library-2997958
https://github.com/adafruit/Adafruit_CircuitPython_LIS3DH
https://pypi.org
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://circuitpython.org/libraries

Setup for Pico

The first step is to install the u2if firmware () onto the Raspberry Pi Pico. This is super

easy:

Download the latest release UF2 file from the repo: https://github.com/execuc/

u2if/releases ()

Put the Pico in bootloader mode by holding the BOOTSEL button while plugging

in the board.

Drag the downloaded UF2 file to the RPI-RP2 folder.

DONE!

The board will reset after the copy is complete. Note that no folders will show up. So

it may seem like nothing happened.

Now the Pico will show up as two devices - a USB HID (Human Interface Device) and

a USB CDC (Communication Device Class). The former provides a generic interface

for sending 64 byte "reports" back and forth. The later is essentially a serial interface,

aka "com port". How these show up on your PC will depend on OS.

linux dmesg

On linux, the dmesg output will look something like this when connecting the Pico:

[Mon Apr 26 13:07:36 2021] usb 2-1.5: new full-speed USB device number 12 using

ehci-pci

[Mon Apr 26 13:07:36 2021] usb 2-1.5: New USB device found, idVendor=cafe,

idProduct=4005, bcdDevice= 1.00

[Mon Apr 26 13:07:36 2021] usb 2-1.5: New USB device strings: Mfr=1, Product=2,

SerialNumber=3

[Mon Apr 26 13:07:36 2021] usb 2-1.5: Product: U2IF

[Mon Apr 26 13:07:36 2021] usb 2-1.5: Manufacturer: Pico

[Mon Apr 26 13:07:36 2021] usb 2-1.5: SerialNumber: 0xE6604430433F5326

[Mon Apr 26 13:07:36 2021] cdc_acm 2-1.5:1.0: ttyACM0: USB ACM device

[Mon Apr 26 13:07:36 2021] hid-generic 0003:CAFE:4005.000C: hiddev1,hidraw7: USB

HID v1.11 Device [Pico U2IF] on usb-0000:00:1d.0-1.5/input2

1.

2.

3.

4.

No folders will show up after reset - this is normal.

©Adafruit Industries Page 11 of 40

https://github.com/execuc/u2if
https://github.com/execuc/u2if/releases
https://github.com/execuc/u2if/releases

Windows Device Manager

On Windows, several new entries should show up in Device Manager:

Setup on PC

The main support for the Pico running the u2if firmware in Blinka utilizes the hidapi

library (). Some of the features rely on sending data via a serial connection. For that,

we use the pyserial library (). And to allow use of CircuitPython Libraries, we need the

Blinka () interface layer.

All of these in turn rely on a several other things which vary for different OS's. So

before we can actually use the Pico, we need to get everything setup. See the OS

specific sections for what we went through to get things working for each.

Additional Information

Just for reference, here are links to more information about the main Python libraries

being used. Here's the README from the hidapi source code repo, which has some

install information:

hidapi README

Do NOT pip install hid. That is a different library that should NOT be installed.

©Adafruit Industries Page 12 of 40

https://pypi.org/project/hidapi/
https://pypi.org/project/hidapi/
https://pypi.org/project/pyserial/
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux/overview
https://github.com/trezor/cython-hidapi/blob/master/README.rst

Here's the main documentation for pySerial:

pySerial documentation

The pySerial source code repo is here ().

But first try the install instructions on the pages that follow for your OS.

Windows

Have Python 3 Installed

We assume you already have Python 3 installed on your computer. Note we do not

support Python 2 - it's deprecated and no longer supported!

At your command line prompt of choice, check your Python version with python --

version

Install hidapi

From the command line, manually install hidapi with

pip3 install hidapi

If the install fails with text that ends with something like:

distutils.errors.DistutilsError: Setup script exited with error: Microsoft Visual

C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": https://

visualstudio.microsoft.com/downloads/ ()

Do NOT pip install hid. That is a different library that should NOT be installed.

©Adafruit Industries Page 13 of 40

https://pythonhosted.org/pyserial/
https://github.com/pyserial/pyserial
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

then you will need to also install the Microsoft Visual C++ Build Tools. Thanks to @jkle

m for pointing this out in the forums ().

Download it from here (same link as in text):

Microsoft Visual Studio Downloads

NOTE: You do not need the full Visual Studio IDE. Just the Build Tools.

Scroll down to where it says Tools for

Visual Studio 2019.

Expand the list to show the sub options.

Click the Download button for Build Tools

for Visual Studio 2019.

This downloads a .exe file with a name like vs_BuildTools.exe. Run that to install the

build tools and then try the pip install again.

Install Blinka

To install Blinka and its dependencies, run:

pip3 install adafruit-blinka

Set Environment Variable

You must do this every time before running circuitpython code, you can set it

permanently in windows if you like, for now just type into the same cmd window

you're using with Python

set BLINKA_U2IF=1

©Adafruit Industries Page 14 of 40

https://forums.adafruit.com/viewtopic.php?f=19&t=161344#p793969
https://visualstudio.microsoft.com/downloads/
https://learn.adafruit.com//assets/101959
https://learn.adafruit.com//assets/101959

If you are using Windows Powershell, the syntax is a little different. In that case do:

$env:BLINKA_U2IF=1

Run the sanity checks.

Now move on to the Post Install Checks section and run the commands there to make

sure everything is installed correctly.

Mac OSX

We assume you already have Python 3 and brew available on your Mac. Thankfully,

setup on MacOS X is not so bad!

Note: If you are running VMWare Fusion on MacOS, then you can also try the Window

s install () process.

Install libusb

Start by installing libusb with

brew install libusb

Install PySerial

Type pip3 install pyserial

©Adafruit Industries Page 15 of 40

https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h/windows
https://learn.adafruit.com/circuitpython-on-any-computer-with-ft232h/windows

Install hidapi

Type pip3 install hidapi

Install Blinka

Then pip3 install adafruit-blinka

Set Environment Variable

You'll need to set this variable every time before running CircuitPython code. To do

this, we set the environment variable BLINKA_U2IF .

You can set the variable by running:

export BLINKA_U2IF="1"

Do NOT pip install hid. That is a different library that should NOT be installed.

©Adafruit Industries Page 16 of 40

Run the sanity checks.

Now move on to the Post Install Checks section and run the commands there to make

sure everything is installed correctly.

Linux

The following shows a typical run through installing and setting things up on Linux.

Install libusb and libudev

Run the following:

sudo apt-get install libusb-1.0 libudev-dev

and answer Y to the prompt. This should install libusb and libudev.

Setup udev rules

For this, we just follow recommended setup () from the firmware. Use a text editor to

create and edit a file named /etc/udev/rules.d/55-u2if.rules and add the following

contents:

SUBSYSTEM=="usb", ATTR{idVendor}=="cafe", ATTR{idProduct}=="4005", MODE="0666"

Install hidapi

To install hidapi, run:

pip3 install hidapi

Do NOT pip install hid. That is a different library that should NOT be installed.

©Adafruit Industries Page 17 of 40

https://github.com/execuc/u2if/blob/main/firmware/README.md#linux-udev-rule

Install pySerial

To install pySerial, run:

pip3 install pyserial

Install Blinka

To install Blinka and its dependencies, run:

pip3 install adafruit-blinka

Set environment variable

We need to manually signal to Blinka that we have a Pico running the u2if firmware.

To do this we set the environment variable BLINKA_U2IF. The value doesn't matter,

just use 1:

export BLINKA_U2IF=1

Run the sanity checks.

Now move on to the Post Install Checks section and run the commands there to make

sure everything is installed correctly.

Don't forget this step. Things won't work unless BLINKA_U2IF is set.

©Adafruit Industries Page 18 of 40

Post Install Checks

After going through all the install steps for your OS, run these checks as simple tests

to make sure everything is installed correctly. Go ahead and plug in your Pico to a

USB port on your PC.

Most of these tests are done via the Python REPL, at the >>> prompt. To get there,

simply launch Python:

$ python3

Python 3.6.9 (default, Nov 7 2019, 10:44:02)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Check that hidapi is installed correctly

At the Python REPL, type:

import hid

hid.enumerate()

'device' in dir(hid)

The enumerate() command should dump a listing of everything attached to your

USB ports. The last command is a test of the actual hid module imported and should

return True .

Make sure you've set the BLINKA_U2IF environment variable.

If the 'device' check returned False, make sure the library installed is hidapi.

There is a separate library named hid which should NOT be installed.

©Adafruit Industries Page 19 of 40

Check that pySerial is installed correctly

At the Python REPL, type:

import serial.tools.list_ports as lp

lp.comports()

You should get a list of available COM ports.

Check that Pico can be found

At the Python REPL, type:

import hid

device = hid.device()

device.open(0xCAFE, 0x4005)

It should run without any errors:

If for some reason the Pico can not be found, you might see something like this:

See the "Other RP2040 Boards" section for USB VID and PID to use with open()

for non-Pico boards.

©Adafruit Industries Page 20 of 40

Check your USB cable connection and double check that the u2if firmware is loaded.

If you want to continue testing in the same Python session, then make a quick call to

close() to free up the device.

device.close()

Or, just exit the Python session.

Check environment variable within Python

At the Python REPL, type:

import os

os.environ["BLINKA_U2IF"]

If you get a KeyError it means you did not set the environment variable right:

If you have set it correctly, you'll get a value back:

©Adafruit Industries Page 21 of 40

Check Blinka is setup correctly

If all of the above checks pass, go ahead and try this as a quick sanity check that

basic Blinka functionality is in place. At the Python REPL, type:

import board

dir(board)

You should not get any errors and the various pins available on the Pico should be

shown.

©Adafruit Industries Page 22 of 40

Pinout

While the Raspberry Pi Pico allows the I2C and SPI pins to appear in multiple

locations, the u2if firmware fixes these locations to specific pins.

Power Pins

VBUS - micro-USB input voltage

VSYS - main system input voltage

3V3 - regulated 3.3V output, 300mA max

GND - main ground reference

AGND - ground reference for GP26-29 and ADC0 and ADC1

GPIO Pins

GP0 to GP28 - General Purpose Input Output (GPIO) as well as Pulse Width

Modulation (PWM)

I2C Pins

SCL0 - I2C port 0 clock

SDA0 - I2C port 0 data

SCL1 - I2C port 1 clock

•

•

•

•

•

•

•

•

•

©Adafruit Industries Page 23 of 40

SDA1 - IC2 port 1 data

SPI Pins

SCLK0 - SPI port 0 clock

MOSI0 - SPI port 0 data out

MISO0 - SPI port 0 data in

SCLK1 - SPI port 1 clock

MOSI1 - SPI port 1 data out

MISO1 - SPI port 1 data in

ADC Pins

ADC0 - Analog to Digital Converter (ADC) 0

ADC1 - Analog to Digital Converter (ADC) 1

Examples

All right, now that all that annoying install stuff is done, let's have some fun.

The following sections will provide some basic examples for the main use cases -

GPIO, ADC, PWM, I2C, SPI, and NeoPixel.

Installing Libraries for Breakouts

The general process for installing the CircuitPython library you are interested in will

be the same as shown in the Python section of the Learn guide for your sensor. Just

use pip3.

•

•

•

•

•

•

•

•

•

You are correct in noting that ADC2 is not exposed, we are not sure why!

Make sure you've set the BLINKA_U2IF environment variable.

©Adafruit Industries Page 24 of 40

GPIO

Digital Output

Let's blink a LED!

Here's the bread board layout. The resistor can be something around 1kOhm. We

don't need to make the LED super bright.

And here's a complete blink program you can run to make the LED blink forever.

import time

import board

import digitalio

led = digitalio.DigitalInOut(board.GP17)

led.direction = digitalio.Direction.OUTPUT

while True:

 led.value = True

 time.sleep(0.5)

 led.value = False

 time.sleep(0.5)

Digital Input

Let's read a button!

©Adafruit Industries Page 25 of 40

The cool thing here is that the Pico has internal pull up resistors. Therefore we don't

need to add any additional external resistors, which you might see in some other

wiring diagrams. The equivalent resistor is inside the Pico!

Here's the breadboard layout.

Here's the code to run. It will continuously print the button state.

True = not pressed

False = pressed

import board

import digitalio

button = digitalio.DigitalInOut(board.GP16)

button.direction = digitalio.Direction.INPUT

button.pull = digitalio.Pull.UP

while True:

 print(button.value)

Digital Input and Output

Ok, let's put those two together and make the button turn on the LED. So we'll use

two digital pins - one will be an input (button) and one will be an output (LED).

Here's the bread board layout.

•

•

©Adafruit Industries Page 26 of 40

And here's the code. Note how the code uses not to invert the button logic.

import board

import digitalio

led = digitalio.DigitalInOut(board.GP17)

led.direction = digitalio.Direction.OUTPUT

button = digitalio.DigitalInOut(board.GP16)

button.direction = digitalio.Direction.INPUT

button.pull = digitalio.Pull.UP

while True:

 led.value = not button.value

ADC

Let's read an analog signal!

For this, we'll use a small 10k trim pot () to set up a voltage divider. Here's the wiring

diagram:

©Adafruit Industries Page 27 of 40

https://www.adafruit.com/product/356

And here's the code:

import time

import board

import analogio

knob = analogio.AnalogIn(board.ADC0)

def get_voltage(raw):

 return (raw * 3.3) / 65536

while True:

 raw = knob.value

 volts = get_voltage(raw)

 print("raw = {:5d} volts = {:5.2f}".format(raw, volts))

 time.sleep(0.5)

Spin the knob and the values should change.

Note that even though the Pico's ADC is 12 bits, the value is scaled to 16 bits to

comply with the CircuitPython API.

PWM

Let's dim an LED!

To do this we will use Pulse Width Modulation (PWM) output. The duty_cycle of the

PWM output will control the LED brightness. We'll combine this with the previous ADC

©Adafruit Industries Page 28 of 40

example so we can use the knob to control the LED brightness. Here's the

breadboard layout:

And here's the code to run:

import board

import pwmio

import analogio

knob = analogio.AnalogIn(board.ADC0)

led = pwmio.PWMOut(board.GP15, frequency=1000)

while True:

 led.duty_cycle = knob.value

Turn the knob and the LED should get dimmer and brighter.

I2C

Let's talk to an I2C sensor!

The Pico has two I2C ports. Remember that you can attach multiple sensors to a

single port as long as each has a unique I2C address. So you don't need to use two

just because you have two sensors.

©Adafruit Industries Page 29 of 40

We'll use the MSA301 sensor () which can read acceleration. Here we show wiring via

the header pins. But if you wanted to use the STEMMA QT connector, you could by

using one of the pigtail breakout cables.

Install MSA301 Library

To install the MSA301 library, run the following:

sudo pip3 install adafruit-circuitpython-msa301

Note that this step is the same as shown in the main MSA301 guide (). You would do

the same general process for any other sensor with a CircuitPython library.

Example Code

And then we can run the example from the library. Download it from here:

MSA301 Simple Test Example

save it as msa301_simpletest.py and run it with:

Trying to use an I2C port with nothing attached can cause the system to hang.

I2C0 is the default port used by board.I2C() and SCL/SDA pins.

©Adafruit Industries Page 30 of 40

https://www.adafruit.com/product/4344
https://learn.adafruit.com/msa301-triple-axis-accelerometer/python-circuitpython#circuitpython-installation-of-msa301-library-6-7
https://raw.githubusercontent.com/adafruit/Adafruit_CircuitPython_MSA301/master/examples/msa301_simpletest.py

python3 msa301_simpletest.py

Pick up the board and spin it around. You should see the values change:

Live Plot Example

This one is a little fancier and requires matplotlib () to be installed on the host PC as

well. This is the example shown running in the guide thumbnail image.

Here's the code:

import board

import busio

import adafruit_msa301

import matplotlib.pyplot as plt

import matplotlib.animation as animation

from collections import deque

import time

i2c = busio.I2C(board.SCL1, board.SDA1)

msa = adafruit_msa301.MSA301(i2c)

REFRESH_RATE = 50

HIST_SIZE = 61

x_time = [x * REFRESH_RATE for x in range(HIST_SIZE)]

x_time.reverse()

y_data = [deque([None] * HIST_SIZE, maxlen=HIST_SIZE) for _ in range(3)]

fig, ax = plt.subplots(1, 1)

fig.canvas.manager.set_window_title("MSA301 Acceleration")

fig.set_figwidth(9)

fig.set_figheight(3)

ax.grid(True, linestyle=':')

ax.set_facecolor('#303030')

ax.set_xlim(min(x_time), max(x_time))

ax.set_ylim(-15, 15)

ax.invert_xaxis()

lines = []

for data in y_data:

 line, = ax.plot(x_time, data)

 lines.append(line)

lines[0].set_color('#d1ff7a'); lines[0].set_linewidth(3)

lines[1].set_color('#7af6ff'); lines[1].set_linewidth(3)

©Adafruit Industries Page 31 of 40

https://matplotlib.org/

lines[2].set_color('#ff36fc'); lines[2].set_linewidth(3)

def animate(foo):

 for i, a in enumerate(msa.acceleration):

 y_data[i].append(a)

 lines[i].set_ydata(y_data[i])

 fig.canvas.draw()

ani = animation.FuncAnimation(fig, animate, interval=REFRESH_RATE)

plt.show()

SPI

Let's talk to a SPI sensor.

The Pico has two SPI ports. Remember that you can attach multiple sensors to a

single port as long as each has a separate chip select (CS) pin.

Here we use a BME280 sensor on the secondary SPI port.

Install the BME280 Library

To install the BME280 library, run the following:

sudo pip3 install adafruit-circuitpython-bme280

SPI0 is the default port used by board.SPI() and MOSI/MISO/SCLK pins.

©Adafruit Industries Page 32 of 40

Note that this step is the same as shown in the main BME280 guide (). You would do

the same thing for any other sensor.

Run Example

Here's is the example code to run:

import time

import board

import busio

import digitalio

import adafruit_bme280

spi = busio.SPI(board.SCK1, board.MOSI1, board.MISO1)

cs = digitalio.DigitalInOut(board.GP13)

bme280 = adafruit_bme280.Adafruit_BME280_SPI(spi, cs)

while True:

 print("\nTemperature: %0.1f C" % bme280.temperature)

 print("Humidity: %0.1f %%" % bme280.relative_humidity)

 print("Pressure: %0.1f hPa" % bme280.pressure)

 print("Altitude = %0.2f meters" % bme280.altitude)

 time.sleep(2)

Save this as something like bme280_test.py and run it with:

python3 bme280_test.py

and you should see it print out sensor readings over and over:

NeoPixel

Let's light up some NeoPixels!

©Adafruit Industries Page 33 of 40

https://learn.adafruit.com/adafruit-bme280-humidity-barometric-pressure-temperature-sensor-breakout/python-circuitpython-test#python-installation-of-bme280-library-2995297-10

We could use the SPI port to do this, using the hack provided by the neopixel_spi

library (). But the u2if firmware supports the real deal. No need for the hack. Just wire

NeoPixels to any available GP pin and use the normal neopixel library.

Here's an example wiring:

This example uses a 12 ring RGB NeoPixel (). For any other setup, just change the

number of pixels and possibly the pixel order.

Install NeoPixel Library

To install the NeoPixel library, run the following:

Currently, only RGB NeoPixels are supported.

While NeoPixels are best used with 5V power and 5V logic, many times they are

fine with 3.3V logic. If you don't get the LEDs to light up, try powering the ring

from 3.3V or adding a level shifter

©Adafruit Industries Page 34 of 40

https://learn.adafruit.com/circuitpython-neopixels-using-spi/overview
https://learn.adafruit.com/circuitpython-neopixels-using-spi/overview
https://www.adafruit.com/product/1643

sudo pip3 install adafruit-circuitpython-neopixel

These are the same install instructions as found in the main NeoPixel guide ().

Run Example

And here is the example code to drive the 12 NeoPixel ring. To keep things simple, we

simply fill the ring with various colors.

import time

import board

import neopixel

COLORS = (

 (255, 0, 0),

 (0, 255, 0),

 (0, 0, 255),

 (255, 255, 0),

 (255, 0, 255),

 (0, 255, 255),

)

pixels = neopixel.NeoPixel(board.GP28, 12)

while True:

 for color in COLORS:

 pixels.fill(color)

 time.sleep(1)

Save that as something like neopixel_ring.py and then run with the following:

python3 neopixel_ring.py

And the ring should light up!

Other RP2040 Boards

Since the u2if firmware uses standard HID and CDC interfaces for communicating with

the host PC, it can potentially run on any Raspberry Pi RP2040 based board, not just

the Pico. The main code changes needed are:

Provide appropriate USB PID and VID.

Change pin mappings to specific RP2040 based board.

We've done that for several Adafruit RP2040 based boards. Details for each are

provided below. For each, install the provided UF2 firmware, set the environment

variable:

•

•

©Adafruit Industries Page 35 of 40

https://learn.adafruit.com/adafruit-neopixel-uberguide/python-circuitpython#python-installation-of-neopixel-library-3005638-10

BLINKA_U2IF=1

and then launch Python. The board will be auto detected based on USB PID and VID.

Feather RP2040

Adafruit Feather RP2040

A new chip means a new Feather, and the

Raspberry Pi RP2040 is no exception.

When we saw this chip we thought "this

chip is going to be awesome when we

give it the Feather...

https://www.adafruit.com/product/4884

Here is the firmware:

u2if_feather_rp2040.uf2

Pico Firmware USB IDs:

USB_VID = 0x239A

USB_PID = 0x00F1

Example check-if-found test code:

import hid

device = hid.device()

device.open(0x239A, 0x00F1)

Here is what you should see if you list the board pins:

$ python3

Python 3.8.5 (default, Jan 27 2021, 15:41:15)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import board

>>> dir(board)

['A0', 'A1', 'A2', 'D0', 'D1', 'D10', 'D11', 'D12', 'D13', 'D24', 'D25', 'D4', 'D5',

Make sure you've also updated to the latest versions of Adafruit Blinka and

PlatformDetect.

•

•

©Adafruit Industries Page 36 of 40

https://www.adafruit.com/product/4884
https://www.adafruit.com/product/4884
https://cdn-learn.adafruit.com/assets/assets/000/102/357/original/u2if_feather_rp2040.uf2?1622050896

'D6', 'D9', 'I2C', 'MISO', 'MOSI', 'SCK', 'SCL', 'SCLK', 'SDA', 'SPI',

'__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__',

'__package__', '__spec__', 'ap_board', 'board_id', 'detector', 'pin', 'sys']

>>>

Here is an example that scans for connected I2C devices. Make sure something is

actually connected to the SCL/SDA pins or the STEMMA QT connector.

import board

i2c = board.I2C()

i2c.try_lock()

i2c.scan()

i2c.unlock()

ItsyBitsy RP2040

Adafruit ItsyBitsy RP2040

A new chip means a new ItsyBitsy, and

the Raspberry Pi RP2040 is no exception.

When we saw this chip we thought "this

chip is going to be awesome when we

give it the ItsyBitsy...

https://www.adafruit.com/product/4888

Here is the firmware:

u2if_itsybitsy_rp2040.uf2

Pico Firmware USB IDs:

USB_VID = 0x239A

USB_PID = 0x00FD

Example check-if-found test code:

import hid

device = hid.device()

device.open(0x239A, 0x00FD)

Here is what you should see if you list the board pins:

•

•

©Adafruit Industries Page 37 of 40

https://www.adafruit.com/product/4888
https://www.adafruit.com/product/4888
https://cdn-learn.adafruit.com/assets/assets/000/102/356/original/u2if_itsybitsy_rp2040.uf2?1622050880

$ python3

Python 3.8.5 (default, Jan 27 2021, 15:41:15)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import board

>>> dir(board)

['A0', 'A1', 'A2', 'BUTTON', 'D0', 'D1', 'D10', 'D11', 'D12', 'D13', 'D2', 'D24',

'D25', 'D3', 'D4', 'D5', 'D7', 'D9', 'I2C', 'MISO', 'MOSI', 'NEOPIXEL',

'NEOPIXEL_POWER', 'SCK', 'SCL', 'SCLK', 'SDA', 'SPI', '__builtins__', '__cached__',

'__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__',

'ap_board', 'board_id', 'detector', 'pin', 'sys']

>>>

Here is a simple example program that reads the state of the BOOT button.

import time

import board

import digitalio

button = digitalio.DigitalInOut(board.BUTTON)

button.direction = digitalio.Direction.INPUT

while True:

 # value is False when button is pressed

 if not button.value:

 print("Button pressed!")

 time.sleep(0.1)

QT Py RP2040

Adafruit QT Py RP2040

What a cutie pie! Or is it... a QT Py? This

diminutive dev board comes with one of

our new favorite chip, the RP2040. It's

been made famous in the new

https://www.adafruit.com/product/4900

Here is the firmware:

u2if_qtpy_rp2040.uf2

Pico Firmware USB IDs:

USB_VID = 0x239A

USB_PID = 0x00F7

•

•

©Adafruit Industries Page 38 of 40

https://www.adafruit.com/product/4900
https://www.adafruit.com/product/4900
https://cdn-learn.adafruit.com/assets/assets/000/102/355/original/u2if_qtpy_rp2040.uf2?1622050836

Example check-if-found test code:

import hid

device = hid.device()

device.open(0x239A, 0x00F7)

Here is what you should see if you list the board pins:

$ python3

Python 3.8.5 (default, Jan 27 2021, 15:41:15)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import board

>>> dir(board)

['A1', 'A2', 'A3', 'BUTTON', 'D0', 'D1', 'D10', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7',

'D8', 'D9', 'I2C', 'MISO', 'MOSI', 'NEOPIXEL', 'NEOPIXEL_POWER', 'SCK', 'SCL',

'SCL1', 'SCLK', 'SDA', 'SDA1', 'SPI', '__builtins__', '__cached__', '__doc__',

'__file__', '__loader__', '__name__', '__package__', '__spec__', 'ap_board',

'board_id', 'detector', 'pin', 'sys']

>>>

And here is a simple example to light the onboard NeoPixel:

import board

import digitalio

import neopixel

pixel = neopixel.NeoPixel(board.NEOPIXEL, 1)

neopwr = digitalio.DigitalInOut(board.NEOPIXEL_POWER)

neopwr.direction = digitalio.Direction.OUTPUT

neopwr.value = True

pixel.fill(0xADAF00)

Trinkey QT2040

Adafruit Trinkey QT2040 - RP2040 USB

Key with Stemma QT

It's half USB Key, half Adafruit QT Py, and

a lotta RP2040...it's Trinkey QT2040, the

circuit board with an RP2040 heart and

Stemma QT legs....

https://www.adafruit.com/product/5056

Here is the firmware:

©Adafruit Industries Page 39 of 40

https://www.adafruit.com/product/5056
https://www.adafruit.com/product/5056
https://www.adafruit.com/product/5056

u2if_trinkey_qt2040_rp2040.uf2

Pico Firmware USB IDs:

USB_VID = 0x239A

USB_PID = 0x0109

Example check-if-found test code:

import hid

device = hid.device()

device.open(0x239A, 0x0109)

Here is what you should see if you list the board pins:

$ python3

Python 3.8.5 (default, Jan 27 2021, 15:41:15)

[GCC 9.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import board

>>> dir(board)

['BUTTON', 'I2C', 'NEOPIXEL', 'SCL', 'SDA', '__builtins__', '__cached__',

'__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__',

'ap_board', 'board_id', 'detector', 'pin', 'sys']

>>>

Here is a simple example program that reads the state of the BOOT button.

import time

import board

import digitalio

button = digitalio.DigitalInOut(board.BUTTON)

button.direction = digitalio.Direction.INPUT

while True:

 # value is False when button is pressed

 if not button.value:

 print("Button pressed!")

 time.sleep(0.1)

•

•

Note: For the Trinkey QT2040: Vendor ID is 0x239A and Product ID is 0x0109

©Adafruit Industries Page 40 of 40

https://cdn-learn.adafruit.com/assets/assets/000/102/912/original/u2if_trinkey_qt2040_rp2040.uf2?1623944698

	CircuitPython Libraries on any Computer with Raspberry Pi Pico
	Table of Contents
	Overview
	Running CircuitPython Code without CircuitPython
	Setup for Pico
	Setup on PC
	Windows
	Mac OSX
	Linux
	Post Install Checks
	Pinout
	Examples
	GPIO
	ADC
	PWM
	I2C
	SPI
	NeoPixel
	Other RP2040 Boards

	Overview
	The Magical u2if Firmware
	CircuitPython Libraries on Personal Computers
	Required Hardware
	Other Hardware

	Running CircuitPython Code without CircuitPython
	Adafruit Blinka: a CircuitPython Compatibility Library
	Raspberry Pi and Other Single-Board Linux Computers
	Desktop Computers
	MicroPython

	Installing Blinka
	Installing CircuitPython Libraries
	Linux Single-Board Computers
	Desktop Computers using a USB Adapter
	MicroPython

	Setup for Pico
	linux dmesg
	Windows Device Manager

	Setup on PC
	Additional Information

	Windows
	Have Python 3 Installed
	Install hidapi
	Install Blinka
	Set Environment Variable
	Run the sanity checks.

	Mac OSX
	Install libusb
	Install PySerial
	Install hidapi
	Install Blinka
	Set Environment Variable
	Run the sanity checks.

	Linux
	Install libusb and libudev
	Setup udev rules
	Install hidapi
	Install pySerial
	Install Blinka
	Set environment variable
	Run the sanity checks.

	Post Install Checks
	Check that hidapi is installed correctly
	Check that pySerial is installed correctly
	Check that Pico can be found
	Check environment variable within Python
	Check Blinka is setup correctly

	Pinout
	Power Pins
	GPIO Pins
	I2C Pins
	SPI Pins
	ADC Pins

	Examples
	Installing Libraries for Breakouts

	GPIO
	Digital Output
	Digital Input
	Digital Input and Output

	ADC
	PWM
	I2C
	Install MSA301 Library
	Example Code
	Live Plot Example

	SPI
	Install the BME280 Library
	Run Example

	NeoPixel
	Install NeoPixel Library
	Run Example

	Other RP2040 Boards
	Feather RP2040
	ItsyBitsy RP2040
	QT Py RP2040
	Trinkey QT2040

