
1

INA219 I2C USB/USB I & V Sensor
2020F Jun 09 (Ina219_08.odt)

by: chris.borrill@gmail.com (edits by D@CC)

Project description : pi-ina219 1.3.0
The USB CVSensor is an USB to USB current and voltage measuring device. It uses an INA219 to
accurately (and dynamically) measured currents and voltages through a USB plug. It is available from
SwitchDoc Labs.

mailto:chris.borrill@gmail.com

2

USB CVSensor Specification (0047-USBCVSNSR-DSBT with Ina219)

•USB Type A Plugs

•Data+, Data-, Ground directly passed through

•INA219 Highside DC Current and Voltage Sensor

•Up to 2000 conversions per second

•0.1 ohm 1% 2W current sense resistor

•Up to ±3.2A current measurement, with ±0.8mA resolution

•Standard Grove I2C Connector to INA219

•Default I2C Address 0x45

RaspPi Pins Grove Pins

GPIO 3 SCL 5 Yellow Pin 1

GPIO 2 SDA 3 White Pin 2

GPIO 3V3 1 Red Pin 3

GPIO Gnd 9 Black Pin 4

Build Status

codecov

PyPI version

This Python library supports the INA219 voltage, current and power monitor sensor from Texas

Instruments on both Python 2 and 3. The intent of the library is to make it easy to use the quite

complex functionality of this sensor.

The library currently only supports continuous reads of voltage and power, but

not triggered reads.

The library supports the detection of overflow in the current/power calculations which results in

meaningless values for these readings.

The low power mode of the INA219 is supported, so if only occasional reads are being made in a

battery based system, current consumption can be minimised.

The library has been tested with the Adafruit INA219 Breakout.

https://www.adafruit.com/products/904
http://www.ti.com/lit/ds/symlink/ina219.pdf
https://badge.fury.io/py/pi-ina219
https://codecov.io/gh/chrisb2/pi_ina219
https://travis-ci.org/chrisb2/pi_ina219

3

Installation and Upgrade

This library and its dependency (Adafruit GPIO library) can be installed from PyPI by executing:

sudo pip3 install pi-ina219

To upgrade from a previous version installed direct from Github execute:

sudo pip3 uninstall pi-ina219

sudo pip3 install pi-ina219

The Adafruit library supports the I2C protocol on all versions of the Raspberry Pi. Remember to

enable the I2C bus under the Advanced Options of raspi-config.

Usage

The address of the sensor unless otherwise specified is the default of 0x40.

Note that the bus voltage is that on the load side of the shunt resistor, if you want the voltage on

the supply side then you should add the bus voltage and shunt voltage together, or use

the supply_voltage() function.

Simple - Auto Gain

This mode is great for getting started, as it will provide valid readings until the device current

capability is exceeded for the value of the shunt resistor connected (3.2A for 0.1Ω shunt resistor).

It does this by automatically adjusting the gain as required until the maximum is reached, when

a DeviceRangeError exception is thrown to avoid invalid readings being taken.

https://github.com/adafruit/Adafruit_Python_GPIO

4

The downside of this approach is reduced current and power resolution.

#!/usr/bin/env python

from ina219 import INA219

from ina219 import DeviceRangeError

SHUNT_OHMS = 0.1

def read():

 ina = INA219(SHUNT_OHMS)

 ina.configure()

 print("Bus Voltage: %.3f V" % ina.voltage())

 try:

 print("Bus Current: %.3f mA" % ina.current())

5

 print("Power: %.3f mW" % ina.power())

 print("Shunt voltage: %.3f mV" % ina.shunt_voltage())

 except DeviceRangeError as e:

 # Current out of device range with specified shunt

resistor

 print(e)

if __name__ == "__main__":

 read()

Advanced - Auto Gain, High Resolution

In this mode by understanding the maximum current expected in your system and specifying

this in the script you can achieve the best possible current and power resolution. The library will

calculate the best gain to achieve the highest resolution based on the maximum expected

current.

In this mode if the current exceeds the maximum specified, the gain will be automatically

increased, so a valid reading will still result, but at a lower resolution.

As above when the maximum gain is reached, an exception is thrown to avoid invalid readings

being taken.

6

#!/usr/bin/env python

from ina219 import INA219

from ina219 import DeviceRangeError

SHUNT_OHMS = 0.1

MAX_EXPECTED_AMPS = 0.2

def read():

 ina = INA219(SHUNT_OHMS, MAX_EXPECTED_AMPS)

 ina.configure(ina.RANGE_16V)

 print("Bus Voltage: %.3f V" % ina.voltage())

 try:

 print("Bus Current: %.3f mA" % ina.current())

7

 print("Power: %.3f mW" % ina.power())

 print("Shunt voltage: %.3f mV" % ina.shunt_voltage())

 except DeviceRangeError as e:

 # Current out of device range with specified shunt

resistor

 print(e)

if __name__ == "__main__":

 read()

Advanced - Manual Gain, High Resolution

In this mode by understanding the maximum current expected in your system and specifying

this and the gain in the script you can always achieve the best possible current and power

resolution, at the price of missing current and power values if a current overflow occurs.

#!/usr/bin/env python

from ina219 import INA219

8

from ina219 import DeviceRangeError

SHUNT_OHMS = 0.1

MAX_EXPECTED_AMPS = 0.2

def read():

 ina = INA219(SHUNT_OHMS, MAX_EXPECTED_AMPS)

 ina.configure(ina.RANGE_16V, ina.GAIN_1_40MV)

 print("Bus Voltage: %.3f V" % ina.voltage())

 try:

 print("Bus Current: %.3f mA" % ina.current())

 print("Power: %.3f mW" % ina.power())

 print("Shunt voltage: %.3f mV" % ina.shunt_voltage())

9

 except DeviceRangeError as e:

 print("Current overflow")

if __name__ == "__main__":

 read()

Sensor Address

The sensor address may be altered as follows:

ina = INA219(SHUNT_OHMS, MAX_EXPECTED_AMPS, address=0x41)

Low Power Mode

The sensor may be put in low power mode between reads as follows:

ina.configure(ina.RANGE_16V)

while True:

 print("Voltage : %.3f V" % ina.voltage())

10

 ina.sleep()

 time.sleep(60)

 ina.wake()

Note that if you do not wake the device after sleeping, the value returned from a read will be the

previous value taken before sleeping.

Functions

• INA219() constructs the class. The arguments, are: _ shunt_ohms: The value of the shunt

resistor in Ohms (mandatory). _ max*expected_amps: The maximum expected current in

Amps (optional).

• busnum: The I2C bus number for the device platform, defaults to auto detects 0 or 1 for

Raspberry Pi or Beaglebone Black (optional).

• address: The I2C address of the INA219, defaults to 0x40 (optional). * loglevel: Set to

_logging.INFO* to see the detailed calibration calculations and _logging.DEBUG to see

register operations (optional).

• configure() configures and calibrates how the INA219 will take measurements. The

arguments, which are all optional, are: _ voltage_range: The full scale voltage range, this is

either 16V or 32V, represented by one of the following constants (optional). _ RANGE*16V:

Range zero to 16 volts

• RANGE*32V: Range zero to 32 volts (default). Device only supports up to 26V.

• gain: The gain, which controls the maximum range of the shunt voltage, represented by

one of the following constants (optional). _ GAIN_1_40MV: Maximum shunt voltage

40mV _ GAIN*2_80MV: Maximum shunt voltage 80mV

• GAIN*4_160MV: Maximum shunt voltage 160mV

• GAIN*8_320MV: Maximum shunt voltage 320mV

• GAIN*AUTO: Automatically calculate the gain (default)

11

• bus*adc: The bus ADC resolution (9, 10, 11, or 12-bit), or set the number of samples

used when averaging results, represented by one of the following constants (optional).

• ADC*9BIT: 9 bit, conversion time 84us.

• ADC*10BIT: 10 bit, conversion time 148us.

• ADC*11BIT: 11 bit, conversion time 276us.

• ADC*12BIT: 12 bit, conversion time 532us (default).

• ADC*2SAMP: 2 samples at 12 bit, conversion time 1.06ms.

• ADC*4SAMP: 4 samples at 12 bit, conversion time 2.13ms.

• ADC*8SAMP: 8 samples at 12 bit, conversion time 4.26ms.

• ADC*16SAMP: 16 samples at 12 bit, conversion time 8.51ms

• ADC*32SAMP: 32 samples at 12 bit, conversion time 17.02ms.

• ADC*64SAMP: 64 samples at 12 bit, conversion time 34.05ms.

• ADC*128SAMP: 128 samples at 12 bit, conversion time 68.10ms.

• shunt*adc: The shunt ADC resolution (9, 10, 11, or 12-bit), or set the number of samples

used when averaging results, represented by one of the following constants (optional).

• ADC*9BIT: 9 bit, conversion time 84us.

• ADC*10BIT: 10 bit, conversion time 148us.

• ADC*11BIT: 11 bit, conversion time 276us.

• ADC*12BIT: 12 bit, conversion time 532us (default).

• ADC*2SAMP: 2 samples at 12 bit, conversion time 1.06ms.

• ADC*4SAMP: 4 samples at 12 bit, conversion time 2.13ms.

• ADC*8SAMP: 8 samples at 12 bit, conversion time 4.26ms.

• ADC*16SAMP: 16 samples at 12 bit, conversion time 8.51ms

• ADC*32SAMP: 32 samples at 12 bit, conversion time 17.02ms.

• ADC_64SAMP: 64 samples at 12 bit, conversion time 34.05ms. * ADC_128SAMP: 128

samples at 12 bit, conversion time 68.10ms.

• voltage() Returns the bus voltage in volts (V).

12

• supply_voltage() Returns the bus supply voltage in volts (V). This is the sum of the bus

voltage and shunt voltage. A DeviceRangeError exception is thrown if current overflow

occurs.

• current() Returns the bus current in milliamps (mA). A DeviceRangeError exception is

thrown if current overflow occurs.

• power() Returns the bus power consumption in milliwatts (mW).

A DeviceRangeError exception is thrown if current overflow occurs.

• shunt_voltage() Returns the shunt voltage in millivolts (mV).

A DeviceRangeError exception is thrown if current overflow occurs.

• current_overflow() Returns ‘True’ if an overflow has occured. Alternatively handle

the DeviceRangeError exception as shown in the examples above.

• sleep() Put the INA219 into power down mode.

• wake() Wake the INA219 from power down mode.

• reset() Reset the INA219 to its default configuration.

Performance

On a Raspberry Pi 2 Model B running Raspbian Jesse and reading a 12-bit voltage in a loop, a

read occurred approximately every 10 milliseconds.

Debugging

To understand the calibration calculation results and automatic gain increases, informational

output can be enabled with:

13

ina = INA219(SHUNT_OHMS, log_level=logging.INFO)

Detailed logging of device register operations can be enabled with:

ina = INA219(SHUNT_OHMS, log_level=logging.DEBUG)

Testing

Install the library as described above, this will install all the dependencies required for the unit

tests, as well as the library itself. Clone the library source from Github then execute the test suite

from the top level directory with:

python3 -m unittest discover -s tests -p 'test_*.py'

A single unit test class may be run as follows:

python3 -m unittest tests.test_configuration.TestConfiguration

Code coverage metrics may be generated and viewed with:

coverage run --branch --source=ina219 -m unittest discover -s

tests -p 'test_*.py'

coverage report -m

14

Coding Standard

This library adheres to the PEP8 standard and follows the idiomatic style described in the

book Writing Idiomatic Python by Jeff Knupp.

WRITING TO/READING FROM THE INA219
(pg 10 of the ti ina219.pdf data sheet. . .)
Accessing a particular register on the INA219 is accomplished by writing the appropriate value to
the register pointer. Refer to Table 4 for a complete list of registers and corresponding addresses.
The value for the register pointer as shown in Figure 17 is the first byte transferred after the salve
address byte with the R/W bit LOW. Every write operation to the INA219 requires a value for the
register pointer.

Simple Current Shunt Monitor Usage
(No Programming Necessary) (p16 of the ti data sheet)

The INA219 can be used without any programming [Editor: see “Simple Code” below] if it is only
necessary to read a shunt voltage drop and bus voltage with the default 12-bit resolution, 320mV
shunt full-scale range (PGA=÷8), 32V bus full-scale range, and continuous conversion of shunt and
bus voltage.

Without programming, current is measured by reading the shunt voltage. The Current Register and
Power Register are only available if the Calibration Register contains a programmed value.

-end of text from the ti ina219 data sheet-

15

RASPBERRY PI INA219 TUTORIAL by rdagger68

Source 09 by rdagger68 describes in detail how to use a very simple program to read the bus
voltage and shunt current from a ina219. This ultra-simple code is shown below.

The above code displays the matching voltage and current readings from the ina219 on an LCD.
But it is very simple to remove all lines of code beginning with “lcd” and replace some of them
with the equivalent python “print()” statements. This code will function well with either the
Adafruit INA219 board or the similar board from SwitchDoc Labs. This is because they both
contain an INA219 with a shunt resistor of .1 ohms. Our thanks to rdagger68 for this code. He
acknowledges the outstanding work that was done by ChrisB2 to create the ina219 library
referenced in Source 01. The article by rdagger68 describes how to set up and use the INA219 in
the simplest way possible. This approach shows how to operate the UBA219 effectively, not
needing the “programming mode” as described in detail in the “ti” data sheet.

16

Compared to the Adafruit INA219 board, I prefer the ina219 board (shown above) from SwitchDoc
Labs (Source 02) because it is equipped with 2 USB Connectors; one to accept the supply voltage
and the other to feed the device whose current is to be monitored. The third connector (white
plastic called a Grove connector) provides the 4 I2C signals leading to the Raspberry Pi that is
taking the measurements. A matching 4 wire Grove cable can also be purchased to link it to the
Raspberry Pi. The articles in Source 03 and Source 04 describe how to connect other devices that
are also available from Grove. The color-coding used in the Grove wires and connectors is
described at the very beginning of this article (on page 2).

Beware of the Unsuccessful Software described in Source 05. Apparently, no example of
functioning code was ever published.

Source 06 describes a Bachelor's thesis written in Spain that uses an INA219. Sources 10 and 11
refer to a website and article(s) written by David@ColeCanada.com (D@CC).

Measurements using the ina219
by D@CC on 2020F Jun 09

Device Volts mAmps Watts Equiv. Resistance
no device 5.1V 1.2mA 0.0 Watts 4,250. ohms
iPhone (100% charged) 5.1V 78.8mA 0.9 Watts 65.38 ohms
iPhone (89% charged) 4.9V 358.6mA 1.8 Watts 13.6 ohms

Compare these numbers with the charging curve below (as published in Source 12).

iphone-8-charging-speeds (See Source 12)

mailto:D@CC
mailto:D@CC
mailto:David@ColeCanada.com

17

WEB SOURCES

Source 01 : https://pypi.org/project/pi-ina219/ at pypi.org by Chris Borrill 2019K Nov 09
Source 02 : http://www.SwitchDoc.com (SwitchDoc Labs)
Source 03: https://www.seeedstudio.com/blog/2016/03/09/tutorial-intro-to-grove-connectors-for-
arduinoraspberry-pi-projects/ Seeedstudio.com
Source 04: http://www.seeedstudio.com/blog/2016/03/10/tutorial-grove-connector-project-
examples-for-raspberry-pi-arduino/ Grove Fan Connection
Source 05: https://www.raspberrypi.org/forums/viewtopic.php?t=212387 Unsuccessful Software
Source 06: https://upcommons.upc.edu/bitstream/handle/2117/180533/tfg-report-pol-planas.pdf
 Power consumption datalogger based on Python and Raspberry Pi
 (Bachelor's Thesis by Pol J. Planas Pulido Fall 2019 for Director: Manuel Moreno
 Eguílaz Enginyeria Industrial de Barcelona)
Source 07: https://hexdocs.pm/ina219/INA219.html#content Unknown programming language
Source 08: https://github.com/chrisb2/pi_ina219 pi-ina219 1.3.0 by ChrisB2
Source 09: https://www.rototron.info/raspberry-pi-ina219-tutorial/ INA219 Simple Code by

 rdagger68 on 2017B Feb 10
Source 10: http://www.mehincharge.com/ www.MehInCharge.com web site by D@CC to log many

various Acquisition/Control readings from devices such as the INA219.
Source 11: http://ephotocaption.com/a/130/130.html Electronics for the Raspberry Pi Computer
 by D@CC listing various electronic sensing devices such as the INA219.
Source 12: https://appleinsider.com/articles/17/10/03/comparing-iphone-8-charging-speeds-with-
fast-charge-wireless-and-more iphone-8-charging-speeds by Max Yuryev in 2018.

/Documents/2020/SwitchDocLabs/Ina219_08.odt

https://appleinsider.com/articles/17/10/03/comparing-iphone-8-charging-speeds-with-fast-charge-wireless-and-more
https://appleinsider.com/articles/17/10/03/comparing-iphone-8-charging-speeds-with-fast-charge-wireless-and-more
mailto:D@CC
http://ephotocaption.com/a/130/130.html
mailto:D@CC
http://www.mehincharge.com/
https://www.rototron.info/raspberry-pi-ina219-tutorial/
https://github.com/chrisb2/pi_ina219
https://hexdocs.pm/ina219/INA219.html#content
https://upcommons.upc.edu/bitstream/handle/2117/180533/tfg-report-pol-planas.pdf
https://www.raspberrypi.org/forums/viewtopic.php?t=212387
http://www.seeedstudio.com/blog/2016/03/10/tutorial-grove-connector-project-examples-for-raspberry-pi-arduino/
http://www.seeedstudio.com/blog/2016/03/10/tutorial-grove-connector-project-examples-for-raspberry-pi-arduino/
https://www.seeedstudio.com/blog/2016/03/09/tutorial-intro-to-grove-connectors-for-arduinoraspberry-pi-projects/
https://www.seeedstudio.com/blog/2016/03/09/tutorial-intro-to-grove-connectors-for-arduinoraspberry-pi-projects/
http://www.SwitchDoc.com/
https://pypi.org/project/pi-ina219/

	INA219 I2C USB/USB I & V Sensor
	Project description : pi-ina219 1.3.0
	USB CVSensor Specification (0047-USBCVSNSR-DSBT with Ina219)
	Installation and Upgrade
	Usage
	Simple - Auto Gain
	Advanced - Auto Gain, High Resolution
	Advanced - Manual Gain, High Resolution
	Sensor Address
	Low Power Mode

	Functions
	Performance
	Debugging
	Testing
	Coding Standard

