
1

PiR2 Data Log System Definition V15

by David@ColeCanada.com
2022 B Feb 28

Table of Contents

1. Purpose
2. Introduction
3. Components
4. Record Definitions
5. Procedures/Methods
6. Related Documents
7. Sources

mailto:David@ColeCanada.com

2

1. Overall Purpose
The purpose of the PiR2 system is to allow the owner of the PiR2 system to monitor and control

each area of his home or business. This is done by installing a Raspberry Pi controller in each area.
The owner can use his iPhone (or iPad, tablet etc) to oversee the monitoring of each area (for example,
the kitchen temperature). The owner can also use his iPhone (or iPad, tablet etc) to control devices in
each area (for example take a picture or turn on a lamp). A long-term log (i.e. a record) can be kept of
the activity in each area of the house.

1.1 The More Detailed Purpose
The detailed purpose of the PiR2 data log is to define the data that moves within the PiR2

system. Most of the data manipulated by the PiR2 system is data that is acquired by the various Data
Acquisition/Control (DA/C) io devices attached to each Raspberry Pi computer. Even without any
additional controller electronics, the Pi computer itself can be used as a source of data. The internal
temperature of the Pi processor can be easily read. So can the Serial Number and at least one voltage
within the Pi processor. These three io devices are preprogrammed in the PiR2 system. They can be
used to test the functionality of the PiR2 system software. The internal temperature of the Pi processor
is of considerable interest because it tends to slightly fluctuate.

A Meh-In-Charge software license is required in order to store and access the acquired data
measurements on the PiR2 web site. This license can be downloaded from the Meh-In-Charge website
and is free for the next month of use. Upon expiry, for continued access, the license must be
purchased.

Other external PiR2 io devices (e.g. sensors) are available for purchase. Or they can be built by
the user. An owner of a Meh-In-Charge software license can access the data that is acquired by the
sensors on his/her Raspberry Pi. Graphs of the data measurements can be prepared, analysed and/or
printed anywhere by using any communications device such as an iPad, cell phone or computer. Of
course the communications device must be attached to the internet. The owner can also control the
Data Acquisition/Control (DA/C) devices on his/her Raspberry Pi remotely with such communication
devices. What Pi devices can be controlled by the owner? A long list of such devices appears later in
this document in Section 3.2.1. Fortunately most owners of a Raspberry Pi connect it to a television set
via HDMI. With a Meh-In-Charge license, a remote user can cause recordings to be played on the
speakers of the television set used by his/her Raspberry Pi. The recording can be any mp3 tune, any
audio recording or even a phrase (wav) spoken by the owner.

In future, such a person can dictate a phrase into his iPhone and cause the phrase to be “spoken”
by the television set connected to his Raspberry Pi. In future, the Meh-In-Charge software will permit
the operation of devices via Blue-tooth. Such devices must be located in the same room as the PiR2
computer. This is possible because Blue-tooth capability is already built into each Raspberry Pi.

A single PiR2 controller can be used to monitor any room. A person, far from the room, can
discover what is happening in the room. The PiR2 controller in the room senses what is happening in
the room. The data sensed by this controller is continually uploaded to the Meh-In-Charge website. At
any time, the Meh-In-Charge user can see what is going on in the room. For example, the temperature
of the room can be viewed in a graph on the user's iPad, even if the user is in a remote location.

3

One of the main ioDevice types supported by the PiR2 system is a USB recharging station.
Each recharging station can be used to charge one of the following:

iPod
iPad
iPhone
cell phone
tablet
etc.

The PiR2 system is designed to do an enhanced job of recharging these devices. By measuring
the current being furnished by each USB recharging station, the PiR2 system can know very much
about the USB recharging situation such as:

whether the recharging station is empty. (If so the user can be notified at bedtime)
if the device being recharged is full or empty
estimate how much time it will take to recharge the device
etc.

In this way the user can control many devices by using the Meh-In-Charge system. The Meh-In-
Charge name means that the user is in charge (of the recharging of his communication devices) as well
as being in charge of the ioDevices connected to each PiR2 controller. Note that the formula “PiR
squared” calculates the area of a circle. Each PiR2 device controls the area in which it is situated.

1.2 Previous Related Projects

The author has experience creating 2 related projects:

iGalri
The iGalri project permits a user to upload a photo and its description to the iGalri.com website.

All descriptions are stored in a database. The user can then choose any phrase that might appear as a
subphrase in any of the descriptions. A suitable database SQL query is then done to search for the
phrase. Each photo containing that phase in its description will then be displayed (along with the full
description of each photo).

Silver HOA
The Silver HOA project is a website for an HOA or condominium association (e.g.

BurgundyUnitOne.com). Photos are displayed in various areas within the website. A small routine was
created to permit authorised persons to upload captioned photos to the website. Tthis website has been
replaced by Burgundy1.org .

4

2. Introduction
The tiny $35 Raspberry Pi computer Model 3 is shown below:

This computer is described in more detail in Source 8. It requires a power supply, HDMI monitor,
keyboard and mouse along with the Raspbian Operating System and an Ethernet connection to the
Internet. Setting them up is not described in this document.

The Raspberry Pi computer is the main part of the PiR2 Controller. The formats of the data will now be
defined:

The PiR2 data log system is comprised of 3 sections:
 a) the remote controller data queue and log

b) the data being transferred across the web
c) the DataBase housed at the PiR2 website

5

The data is accessed as shown in the following diagram:

PiR2 Remote Controller User
^ ^
 | |
v v

 Remote Controller Web Site
 dataQueue < -- data transfer via the web – > DataBase
 (dataLog)

The data records in the three sections highly resemble each other. The records in the remote
controller are stored in an ascii queue in a sequential file format. The Python driver for each
input/output (io) device can easily add a single record to an ascii queue (which is stored in a sequential
ascii text file). The queue manager in each remote controller can easily work with a sequential file.
Objects (such as photos in jpg format) can be in a second queue (an object queue) that is managed by
the same software routine as the ascii queue. Note that the object queue transfers will be out of sync
with the ascii queue.

The different data formats are chosen for simplicity in the remote controller’s dataQueue
(i.e.dataLog) where they will be appended using Python routines. Each ioDevice will have a matching
Python routine that will add (or read) ascii records to/from the ascii queue. The more complex io
devices will have more complex Python routines that also add/retrieve objects (e.g. a jpg photo or an
audio wav) to the object queue. All objects will be stored in a common folder in the remote controller.

The data and objects are transferred bidirectionally between the remote controller and the
DataBase on the website using HTML/PHP routines located on the website. These HTML/PHP
routines are invoked using Mathematica routines on the remote controller. The Mathematica routines
manage the queues and the HTML/PHP routines without human intervention. The HTML/PHP
routines can transfer ascii records and objects in both directions across the web. The Mathematica
routines can easily manage the ascii queues and the object queues. The data format of the data being
transferred over the internet is designed to minimize the number of bytes being transferred so as to
minimize data transfer times.

The data format in the DataBase at the website is designed to be accessed using SQL queries.
The user accessing the data in the DataBase will solely use prewritten HTML scripts that invoke PHP
routines that make use of SQL queries. The sole use of HTML scripts to access data in the DataBase
means that the user can access the data from his/her remote ioDevices using any web-conversant device
such as a computer, an iPad, an iPhone, a cellphone or a tablet.

6

2.1 The Ascii Queue
The records in the ascii queue can be of 4 formats: Basic, Normal, Max-Data and Objects.

These formats are of increasing complexity. The 3 least complex formats do not include data objects.
In the ascii queue, a typical data record in Basic format will include the following information:

Field Name E.g. Description
record type D iindicates a Deleted data record
format code B code indicating the Basic data format

qid 000000010045 unchangeable io record identifier for each data record
 from this io device

datiPosted 0123431234 timestamp (number of seconds since the UNIX epoch
 which is Jan 01, 1970). This field is used for sorting the
 file when being accessed.

IoDevice procTEmp a sensor or control device
timePosted 2019EMay13-17:19 DateAndTimePosted (16 bytes) NB not used for sorting

the timePosted shows at a glance the age of the record
source A A : Acquired data (to be sent to the DataBase)

C : Control data (to be sent to the remote controller)
st0 Q initial state (does not change)
st S dynamic state in the queue (normally Q>S>A>L)

Q added to the queue
S sent from the queue
A acknowledged receipt (transfer is complete)
L has been logged to an external log file

individual bad data records can be altered by the user
D flagged for deletion
M modified
C data receivedfrom the database is Control Data

which is in state C??
 C sates also become A states after being used???

such altered records are treated like state Q
ioDevice PiProcTemp The temperature of the Pi Processor
value 256^4 4 bytes of data x00000000 to xFFFFFFFF

this data is usually
1 bit (0 or 1)
1 byte (x00 to xFF)
4 bytes (0 to 4,294,967,295 which PiR2
 considers to be -2 billion to +2 billion)

this is a whole integer (not a real number). If it always
 needs to be multiplied by a factor, the factor is stored
 in the “multiplier” field of the header.

The length of a Basic PiR2 record is 62 bytes.

7

A header record is needed to more completely identify this data record. Its fields are:
Field length E.g. Description
Name (bytes)
Format 1 H code identifying a header record
qid 4 0000000019991 unique record identifier
datiPosted 4
timePosted 16
PiSN 19 00000000a1b2c3d4Pi_ Serial Number of the Pi computer
ioDevice 15 procTemp ioDevice name
ioType 8 temp type of data measured
A/C 1 A Acquistion / Control
room 16 kitchen room name
ioDeviceName 32 Ambient Kitchen Temp user's name for the ioDevice

units 32 degC, measurement is in these units
DataFormat 1 B data records format
ObjPath 64 C:/Pi/User/photos/PiR2 path housing objects on this Pi
unused 42? future use

Total 256 bytes

2.2 The PiR2 Log File
Each data queue is in a constant state of flux. The status fields in the initial (older) records eventually
become “A”. The status of “A” means that the record has been sent to the DataBase and an
acknowledgement has been received. The internet does a very good job of not “losing” records, but
this system does not presume that all internet transfers are perfect. That is why the transfer of each
record must be acknowledged. When the first 1000 records in the data queue all have a status of “A” it
means that they are redundant and will be automatically logged to an external log file, which is usually
a flash drive. After each data record has been moved to the external log file, its status is set to “L”
which means “Logged”. After each external log file has been fully written and is closed, all the records
with a status of “L” will be deleted from the data queue. This prevents each queue from filling the
original (working) drive where it resides. All other activity in the data queue is blocked while the “L”
records are being removed. Records in the data queue must always be accessed/updated by their “qid”
identifier, not by their sequential position in the data queue. However, new records can always be
appended to the sequential file (ie the data queue) without referring to their “qid” identifier.

2.3 The PiR2 Record Set in the Log File
Each PiR2 log file is comprised of the following record set:

H header record for records of each ioDevice
C comment record (can be blank)
D data record for each ioDevice
…………. additional such records
E End of File record (may be absent)

../../../../../../../Pi/User/photos/PiR2

8

2.4 The DataBase Housed at the PiR2 Website

The table structure in the PiR2 DataBase at the website is displayed below:

 user------------------------ <license------------------
 | |
 | ^
 ------ <permissions > --------data--------- < ioDevice
 Container |
 v |
 | ^
 webSite dataValue
 Notes

- The arrowheads in the above table show the “many to one” relationships
 (for example the webSite can house many dataContainers.)

- Each user can have multiple licenses
- Each license (ie each Pi) can have multiple ioDevices
- Each ioDevice can record multiple dataValues
- Each dataContainer can hold data from multiple ioDevices
- Users permitted to access multiple data records in multiple containers
- The website can have multiple containers
- Each dataValue record can easily be denormalized into a record on a 1:1 basis

2.5 The Denormalized dataValue Table
 The denormalized dataValue table in the DataBase will have the following columns:

 Column Name Eg Description/Comment
qid 0000000010045 unique record id autoincremented
source A source defines direction of data travel
st Q state of record in the queue
datiPosted 0123431234 UNIX time when data was read
value 571 the measured data value
multiplier?? .1 denormalized
dataFormat B denormalized
PiSN 00000000a1b2c3d4Pi_ denormalized
ioDevice procTemp denormalized
ioType??? temp denormalized
ioDeviceName Ambient Kitchen Temp. denormalized
room kitchen denormalized
units degC, denormalized
objPath C:/Pi/ Desktop /PiR2/ images ?? denormalized
cont resDCole1ON denormalized

It is a simple matter to plot a graph of the derived value (value x multiplier) of the PiProcTemp along
an axis of time. The time (measured in seconds) can be derived from the datiPosted which is in seconds
of Unix Time.

../../../../../../Pi/Desktop/PiR2/images
../../../../../../Pi/Desktop/PiR2/images
../../../../../../Pi/Desktop/PiR2/images
../../../../../../Pi/Desktop/PiR2/images

9

3. Components
Each of the following components of the PiR2 system will now be described:
3.1 ascii data queue
3.2 object queue
3.3 raspberry Pi computer
3.4 routines: Python, Mathematica, HTML, PHP, SQL queries

3.1 io devices
Those highlighted in Yellow are fully described in this document.
3.5.1 List of ioDevices in the PiR2 Controller

PiR2 io Devices
DA/C bit# ioDevice Description
A 0 pb01 Push Button # 1 (1:low:depressed)
A 1 IRin01 Infra-red detector (1:low:detected)
A 2 AC00amps AC00 (110v mains) amps (1:low:amps are flowing)
A 3 ExtIn01 External Input Bit 01 (1:low:detected)
A 4 ExtIn02 External Input Bit 02 (1:low:detected)
A 5 USBamps01 USB charger amps 01 (1:low:amps are flowing)
A 6 USBamps02 USB charger amps 02 (1:low:amps are flowing)
A 7 unassigned
C 0 Led01 Inhibit LED (Red) on
C 1 IRout01 Infra-red source on
C 2 ACout01 AC output receptacle 01 enable
C 3 ExtOut01 External Output Bit 01 (low)
C 4 ExtOut02 External Output Bit 02 (low)
C 5 Led02 Signal LED (White) on
C 6 USBout01 USB01 charger enable
C 7 USBout02 USB02 charger enable

A 0 Temp00AnlgIn Temp Sensed at location 00 (99.9)
A 1 USB01AnlgOut USB01 Output Amps (16 bits analog)
A 2 USB02AnlgOut USB02 Output Amps (16 bits analog)
A 3 AC01AnlgOut AC01 Output Amps (16 bits analog)

ipAddr

10

Built-In ioDevices (in every Raspberry Pi)
DA/C bit# ioDevice Description SW Name
A piSN readable pi Serial Number ?
A PiProcTemp Pi Processor temperature ?
A PiVolt00 Pi voltage 00 core
A PiVolt01 Pi voltage 01 sdram_c
A PiVolt02 Pi voltage 02 sdram_i
A PiVolt03 Pi voltage 03 sdram_p
A AudioIn01 Pi Audio Input Jack (for microphone)
C AudioOut01 Pi Audio Output jack (for head phones)

Internal non-hardware PiR2 ioDevices monitoring/controlling PiR2 activity
DA/C bit# ioDevice Description
A PiR2dataQlen Number of rows in the PiR2 dataQueue
A PiR2objQlen Number of rows in the PiR2 objectQueue
C dtSampleInt Time between PiR2 samples (default value)

-1 no sampling (PiR2 is off)
 1 (msec) between samples

ethIP Pi’s ethernet IP address

External ioDevices (easily attached to a Raspberry Pi)
DA/C bit# ioDevice Description
C HDMIAud01 HDMI TV audio speaker
A PiPhoto01 photo taken by a Pi camera
A PiVideo01 video taken by a Pi camera

3.2 ioType
There is a small number of different types of io:

ioType Description
temp Temperature degF,
amps amps of electrical current
bit lowVoltage = 1 = on
number any integer from -2 billion to +2 billion
audio any audio recording (mp3 or wav format)
voltsDC electrical DC voltage
voltsAC electrical AC voltage
text any text string (never exceeds 256 bytes)
photo any photo (jpg, tiff or png format)

video any video

11

3.3 Meh-In-Charge Table Definitions
These tables are in the PiR2 DataBase at the Meh-In-Charge website.

To be added

4. Record Definitions

5. Procedures/Methods
5.1 Python routines

Each ioDevice on the Raspberry Pi's PiR2 controller will be controlled by a single Python
routine (a function). The name of the function will include the ioDevice name. An example for the
procTemp ioDevice follows:

fun io_ procTemp(returns,DAC=“A”, ioDevice=”PiProcTemp”, simulate=globalSimulate,
initializeTo=none, deviceNameInMachine=”sdram_p”) :

#Python 2 or 3 code
 if returns=”DAC” result$=DAC
 if returns=”ioDevice” result$=ioDevice
 if returns=”deviceNameInMachine” result$= deviceNameInMachine
 if returns=”simulate” result$=simulate
 if returns=”initializeTo” result$=initializeTo
 if returns=”dataValue” and “simulate”=”False” result$ = Bash(vcgencmd measure_temp)
 if returns=”dataValue” and “simulate”=”True” result$ = 57.0 +random()*2.0
 return result$

 # end of definition of fun print_io_PiProcTemp()

#The following Python statement will display the (verbose) results

fun print_verbose_io_PiProcTemp() :
#Python 3 code #this function will error out if run under Python 2

 if global_Python3=”False” return “ERROR: This function (print_ioPiPRocTemp) needs
 Python version 3”

 Print (io_PiProcTemp(“iodevice”)) #device name
 Print (io_PiProcTemp(“DAC”)) #DAC A:Acquire, C:Control
 Print (io_PiProcTemp(“deviceNameInMachine”)) #if a software read is used
 Print (io_PiProcTemp(“simulate”)) #is simulating being done?

12

 Print (io_PiProcTemp(“initializeTo”)) #initial value
 Print (io_PiProcTemp(“dataValue”)) #Acquire and print the dataValue

 # end of definition of fun print_io_PiProcTemp()

#For verbose output, code:
print_verbose_io_procTemp() # read & print (verbose) the temperature

of this Pi Processor !

#To truly read the PiProcTemp, code:
print(io_PiProcTemp(dataValue)) # read & print the temperature of this Pi Processor !

If globalSimulate is False

A similar Python routine must be created for each ioDevice.

5.1.0 Various Commands for PiR2

5.1.0.1 Common Unix Printing System (cups)
The following is necessary to access printers

sudo opt-get install cups

5.1.0.2 Remote Desktop Communication
To install RDP (aka RDC)

sudo apt-get install xrdp

The following turns on/off RDC
xrdp
xrdp -kill

The Rpi’s IP address is needed when starting RDC. To find the IP address, hover over the WiFi
symbol in the top right corner of the RPi monitor or run “>$ sh Ipaddr.sh” or “>$ipconfig”.
The RPi password is necessary when starting RPC on a Windows—10 PC. The mnemonic
for this password is LydieArthur$. To change the Pi password use “>$ sudo passwd pi”.
See the Rpi environment with “>$ sh Environ.sh”
To start up the PiR2 system:

>$ sh pir2.sh

In 2022, a comprehensive shell command has been developed to display the
complete environment on the Raspberry Pi. It is invoked by the command below:

5.1.0.3 Environ.sh command

>$ sh Environ.sh

13

5.1.0.4 Other Shell Commands

Other shell commands are:

>$ sh model.sh
>$ sh serial.sh
>$ sh Alarm.sh
>$ sh etc

5.1.1 Compiling and Running Python routines
The process to run a Python 3 routine on my Raspberry Pi is:

cd Python
Double-Click on the python source file eg Prog02C.py (see Document 1)
sh pir2.sh will run the pir2main.py program from the command prompt.

This system needs python version 3 to run. Some code won't run under python 2.
No known program exists to compile python programs.

5.1.2 Python routines for Built-In ioDevices (in every Raspberry Pi)
DA/C bit# ioDevice Description
A piSN readable pi Serial Number

The following routines provide the pi Serial Number from a reliable memory location.
But a more complicated routine is needed to read the Serial Number directly from the Pi
 computer.

Routine a): >$ echo “$Serial”
Routine b): >$ grep Serial /proc/cpuinfo
Routine c): >$ grep Model proc/cpuinfo

A procTemp Pi Processor temperature
Routine: vcgencmd measure_temp

A PiVolt01 Pi voltage 00
Routine: vcgencmd measure_volts core

A PiVolt01 Pi voltage 01
Routine: vcgencmd measure_volts sdram_c

A PiVolt02 Pi voltage 02
Routine: vcgencmd measure_volts sdram_i

A PiVolt03 Pi voltage 03
Routine: vcgencmd measure_volts sdram_p

A AudioIn01 Pi Audio Input Jack (microphone)
Routine: unknown

14

C AudioOut01 Pi Audio Output jack (head phones)
Routine: unknown

C AudioTV01 Pi Television speaker output
Routine: omxplayer Music/coupe.mp3
Also >$ amixer cset numid=32 for audioTV

 and > $ amixer cset numid=31 for audoiOut01
Also >$uname -m gives aarah64???
Also >$ omxplayer Music/Coupe.mp3
Also >$ aplay Music/alarm.wav

A piIP
>$ ifconfig | grep inet >text/ip.txt

C piArea routine g_piRoom = parameter
A osDistro

>$ cat etcrpi-issue shows the long Distro number

A piSN
>$ grep Serial proccpuinfo

A osName
>$ lsb release -a shows “buster”

5.1.3 led01 ioDevice LED

 The control of the LED and pushButton are decribed iin detail in Source 8.

 This LED is connected to GPIO 12 which will provide a positive (+) voltage when ON (1).
when OFF (0) the signal voltage coming out of GPIO 12 will be almost at Ground.

15

Note: It matters how you plug in your LED! Current can only flow in one direction through an LED, so pay
careful attention to the leads. The short lead on the LED should be connected to the ground or through the
330 ohm resistor to the ground..

This LED (and the following Pushbutton) can be easily connected to the Raspberry Pi General Purpose
Input / Output (GPIO) terminals (listed below) using the wedge (shown after that).

16

The diagram below shows the Wedge which is used to connect electronics to the Pi.
5.1.3.1 Wedge and Breadboard

17

5.1.3.2 Python routines for the LED device

The following Python3 software can be used to turn the LED on and off.
Copy the gpio software

pip install Python3.rpi.gpio

NB The above statement may have been deprecated, use the GUI to setup the GPIO pins

In a new file, copy the following code:
import time
import Python3.RPi.GPIO as GPIO

Pin definitions
led_pin = 12

Suppress warnings
GPIO.setwarnings(False)

Use "GPIO" pin numbering
GPIO.setmode(GPIO.BCM)

Set LED pin as output
GPIO.setup(led_pin, GPIO.OUT)

Blink forever
while True:
 GPIO.output(led_pin, GPIO.HIGH) # Turn LED on
 time.sleep(1) # Delay for 1 second
 GPIO.output(led_pin, GPIO.LOW) # Turn LED off
 time.sleep(1) # Delay for 1 second

18

Save the file (I named my file blink.py). Run the code from the terminal by entering:

python blink.py

Running this program will cause the LED to blink on for 1 second and then off for 1 second.
Click Ctrl-C to abort this program.

5.1.4 pb01 ioDevice (Pushbutton)

 This pushbutton is connected to GPIO 4

Copy the following code:
import time
import RPi.GPIO as GPIO

Pins definitions
btn_pin = 4 (connect it through the pushButton to 3v3.)
led_pin = 12 (connect it through 180 ohms to the long leg of the LED,
 and connect the long leg of the LED to GND.)

Set up pins
GPIO.setmode(GPIO.BCM)
GPIO.setup(btn_pin, GPIO.IN)
GPIO.setup(led_pin, GPIO.OUT)

If button is pushed, light up LED
try:
 while True:
 if GPIO.input(btn_pin):
 GPIO.output(led_pin, GPIO.LOW)
 else:
 GPIO.output(led_pin, GPIO.HIGH)

When you press ctrl+c, this will be called
finally:
 GPIO.cleanup()

Save the code as button.py and then run it.

When the pushbutton is pressed, the LED will turn on. When it is released, the LED will turn off.

5.1.5 The Pi vcgencmd options

vcgencmd commands:
commands="vcos, ap_output_control, ap_output_post_processing,

vchi_test_init, vchi_test_exit,
pm_set_policy, pm_get_status, pm_show_stats, pm_start_logging,

pm_stop_logging, version, commands,

19

set_vll_dir, led_control, set_backlight, set_logging, get_lcd_info,
set_bus_arbiter_mode,

cache_flush, otp_dump, codec_enabled, measure_clock, measure_volts,
measure_temp, get_config,

hdmi_ntsc_freqs, render_bar, disk_notify, inuse_notify, sus_suspend,
sus_status, sus_is_enabled,

sus_stop_test_thread, egl_platform_switch, mem_validate, mem_oom,
mem_reloc_stats, file,

vctest_memmap, vctest_start, vctest_stop, vctest_set, vctest_get"

5.1.6 tmp00AnlgIn (using the TMP102) on a Raspberry Pi

Wire up the TMP102 to the Raspberry Pi as follows:

Connect SDA1 (GPIO2, pin 3) to SDA on the TMP102

•Connect SCL1 (GPIO3, pin 5) to SCL on the TMP102

•Connect power (3.3 V) to VCC on the TMP102

•Connect ground (GND) to GND on the TMP102

To do this, 4 tiny wires must be soldered to the TMP102 to be used as pins.

install the python smb bus routines (Source 4 for more info):

sudo apt-get install python3-smbus

In a new file, copy in the following code:

import time
import smbus

i2c_ch = 1

20

TMP102 address on the I2C bus
i2c_address = 0x48

Register addresses
reg_temp = 0x00
reg_config = 0x01

Calculate the 2's complement of a number
def twos_comp(val, bits):
 if (val & (1 << (bits - 1))) != 0:
 val = val - (1 << bits)
 return val

Read temperature registers and calculate Celsius
def read_temp():

 # Read temperature registers
 val = bus.read_i2c_block_data(i2c_address, reg_temp, 2)
 temp_c = (val[0] << 4) | (val[1] >> 5)

 # Convert to 2s complement (temperatures can be negative)
 temp_c = twos_comp(temp_c, 12)

 # Convert registers value to temperature (C)
 temp_c = temp_c * 0.0625

 return temp_c

Initialize I2C (SMBus)
bus = smbus.SMBus(i2c_ch)

Read the CONFIG register (2 bytes)
val = bus.read_i2c_block_data(i2c_address, reg_config, 2)
print("Old CONFIG:", val)

Set to 4 Hz sampling (CR1, CR0 = 0b10)
val[1] = val[1] & 0b00111111
val[1] = val[1] | (0b10 << 6)

Write 4 Hz sampling back to CONFIG
bus.write_i2c_block_data(i2c_address, reg_config, val)

Read CONFIG to verify that we changed it
val = bus.read_i2c_block_data(i2c_address, reg_config, 2)
print("New CONFIG:", val)

21

Print out temperature every second
while True:
 temperature = read_temp()
 print(round(temperature, 2), "C")
 time.sleep(1)

Save the file (e.g. as tmp102.py), and run it with Python:

python tmp102.py

You should see the 2 bytes in the CONFIG register be updated and then the temperature is printed to the
screen every second.

For more details about the TMP102 operation, refer to Source 5 below. The complete TI TMP102
datasheet is in Source 6 below. The TMP102 operates on the I2C serial bus which is described in
Source 7 below.

5.2 Mathematica routines

It is possible that Mathematica routines can move files directly to the server. But probably only
to the server at mathematica.com .

22

5.3 HTML routines

5.4 PHP routines

5.5 User HTML procedures

6. Related Documents
Document 1: /pi/home/pi/Python/Prog01C.py on my Raspberry Pi

7. Sources

Source 1. Raspberry Pi Python Functions: https://learn.sparkfun.com/tutorials/python-
programming-tutorial-getting-started-with-the-raspberry-pi/all

Source 2: An Elaborate Pi Home Monitor:
http://www.raspberry-pi-geek.com/Archive/2014/05/Automate-and-monitor-the-physical-systems-in-
your-home

Source 3: Python Underscore Syntax: https://hackernoon.com/understanding-the-underscore-
of-python-309d1a029edc?gi=572ccf06d3f8

Source 4: python simbus software: https://www.electronicwings.com/raspberry-pi/python-based-i2c-
functions-for-raspberry-pi

Sourc 5: TMP102 on Pi Python routines https://learn.sparkfun.com/tutorials/python-programming-
tutorial-getting-started-with-the-raspberry-pi/experiment-4-i2c-temperature-sensor

Source 6: TI TMP102 Data Sheet
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf?
_ga=2.192862058.1956998499.1557989498-1748529165.1557989498

Source 7: I2C Explanation: https://learn.sparkfun.com/tutorials/i2c

Source 8:Spark Fun Experiment 1: https://learn.sparkfun.com/tutorials/python-programming-
tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output

Source 9: Python type syntax (esp. strings): https://docs.python.org/3/library/stdtypes.html#str.split

Source 10: Python type syntax (esp. strings): 139 Pi: PiR2A Area Controller Prototype (139.html)

Source 11: Previous PiR2 Data Log System Definition V11 (pdf) : PiR2 DataLog Definition11 pdf

/w/PiR2_DataLog_Definition15.odt stored in mrmyrLaptop C:...Documents/2022//DocsC/PiR2

http://ephotocaption.com/a/139/139.html
./:%2F%2Fephotocaption.com%2Fa%2F139%2FPiR2_DataLog_Definition11.pdf
https://docs.python.org/3/library/stdtypes.html#str.split
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-1-digital-input-and-output
https://learn.sparkfun.com/tutorials/i2c
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf?_ga=2.192862058.1956998499.1557989498-1748529165.1557989498
https://www.sparkfun.com/datasheets/Sensors/Temperature/tmp102.pdf?_ga=2.192862058.1956998499.1557989498-1748529165.1557989498
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-4-i2c-temperature-sensor
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/experiment-4-i2c-temperature-sensor
https://www.electronicwings.com/raspberry-pi/python-based-i2c-functions-for-raspberry-pi
https://www.electronicwings.com/raspberry-pi/python-based-i2c-functions-for-raspberry-pi
https://hackernoon.com/understanding-the-underscore-of-python-309d1a029edc?gi=572ccf06d3f8
https://hackernoon.com/understanding-the-underscore-of-python-309d1a029edc?gi=572ccf06d3f8
http://www.raspberry-pi-geek.com/Archive/2014/05/Automate-and-monitor-the-physical-systems-in-your-home
http://www.raspberry-pi-geek.com/Archive/2014/05/Automate-and-monitor-the-physical-systems-in-your-home
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/all
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/all

